RMCF / RMCP Series General Purpose Thick Film Standard Power and High-Power Chip Resistor

- RMCF standard power ratings
- RMCP high power ratings
- Nickel barrier terminations standard
- Power derating from 100% at 70°C to zero at +155°C
- RoHS compliant, REACH compliant, and halogen free
- AEC-Q200 compliant (except 01005 and 0201 sizes)
- For ultra-high power, see <u>RMCP-UP Series Thick Film Ultra High Power Chip Resistor</u>

	Electrical Specifications - RMCF								
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Max. Jumper Current	TCR (ppm/⁰C)	Ohmic Range (Ω)			
	@ 70°C	Voltage (V) (1)	Voltage (V)	(A)		1%	5%		
RMCF01005	0.03	15	30	0.5	± 300	10 -			
	0.00	10		0.0	± 200	100			
RMCF0201	0.05	25	50	0.5	± 400	1-9			
	0.00	25	50	0.5	± 200	10 -			
					± 200	1 - 9	9.76		
RMCF0402	0.063	50	100	1	± 100	10 -	1M		
					± 200	1.02M - 22.1M	1.1M - 22M		
					± 500	0.1 - ().499		
					± 400	0.5 -	0.976		
RMCF0603	0.1	75	150	1	± 200	1 - 9.76 1 - 22M			
					± 100	10 - 1M	-		
					± 200	1.02M - 22.1M	-		
					± 200	0.1 - 9.76	0.1 - 22M		
RMCF0805	0.125	150	300	2	± 100	10 - 1M	-		
					± 200	1.02M - 22.1M	-		
					± 200	0.1 - 9.76	0.1 - 22M		
RMCF1206	0.25	200	400	2	± 100	10 - 1M	-		
					± 200	1.02M - 22.1M	-		
					± 200	0.1 - ().976		
RMCF1210	0.5	200	400	3	± 400	1 - 9	9.76		
					± 100	10 -	10M		
					± 200	0.1 - ().976		
DMOEDA	0.75		100		± 400	1 - 9	9.76		
RMCF2010	0.75	200	400	3	± 200	-	10 - 10M		
					± 100	10 - 10M	-		
					± 200	0.1 - ().976		
			100		± 400	1 - 9	9.76		
RMCF2512	1	200	400	3	± 200	-	10 - 10M		
					± 100	10 - 10M	-		

Notes: (1) Lesser of √(P*R) or maximum working voltage (2) Contact Stackpole for higher or lower values

Stackpole Electronics, Inc.

Resistive Product Solutions

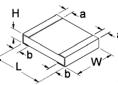
RMCF / RMCP Series General Purpose Thick Film Standard Power

and High-Power Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

	Percent and a second se									
Electrical Specifications - RMCP										
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Max. Jumper Current	TCR (ppm/ºC)	Ohmic Range (Ω) and Tolerance $^{(2)}$				
	@ 70°C	Voltage (V) (1)	Voltage (V)	(A)		1%, 5%				
RMCP0201	0.063	25	50	1	-200 / +400	1 - 9.76				
RIVICF0201	0.003	25	50	I	± 200	10 - 10M				
RMCP0402	0.125	50	100	1.5	± 200	1 - 9.76				
RIVICF0402	0.125	50	100	1.5	± 100	10 - 10M				
RMCP0603	0.25	75	150	2	± 200	1 - 9.76				
RIVICE 0003	0.25	75	150	۲	± 100	10 - 10M				
RMCP0805	0.33	150	300	2.5	± 200	1 - 9.76				
RIVICE 0605	0.33	150	300	2.0	± 100	10 - 10M				
RMCP1206	0.5	200	400	3.5	± 400	1 - 9.76				
RIVICE 1200	0.5	200	400	3.0	± 100	10 - 10M				
RMCP1210	0.66	200	400	5	± 400	1 - 9.76				
RIVICE 1210	0.00	200	400	5	± 100	10 - 10M				
RMCP2010	1	200	400	6	± 200	1 - 9.76				
NIVIOF 2010	2010 1 200 400	400	0	± 100	10 - 10M					
RMCP2512	2	250	500	7	± 200	1 - 9.76				
	2	200	500	1	± 100	10 - 10M				

Notes: (1) Lesser of $\sqrt{(P^*R)}$ or maximum working voltage


(2) Contact Stackpole for higher or lower values

The resistance value range for RMCP jumper is max. 0.02Ω

	Electrical Specifications - Jumper									
Type/Code	Jumper Rated Current (A)	Max Overload Current (A)*	Jumper Resistance Value (Ω)							
RMCF01005	0.5	1								
RMCF0201	0.5	1								
RMCF0402	1	3								
RMCF0603	1	5								
RMCF0805	2	10	0.05 max.							
RMCF1206	2	10								
RMCF1210	3	12]							
RMCF2010	3	12								
RMCF2512	3	15								

* < 1 second and 1 time

Mechanical Specifications

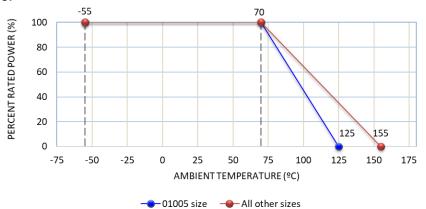
Turne/Code	Typical Unit	L	W	Н	а	b	Unit
Type/Code	Weight (mg)	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Onit
PMCE01005	0.07	0.016 ± 0.001	0.008 ± 0.001	0.005 ± 0.001	0.004 ± 0.001	0.004 ± 0.001	inches
RINCFUTUUS	RMCF01005 0.07	0.40 ± 0.02	0.20 ± 0.02	0.13 ± 0.02	0.10 ± 0.03	0.10 ± 0.03	mm
RMCF0201	0.16	0.024 ± 0.001	0.012 ± 0.001	0.009 ± 0.002	0.006 ± 0.002	0.006 ± 0.002	inches
RMCP0201	0.10	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.05	0.15 ± 0.05	0.15 ± 0.05	mm
RMCF0402	0.57	0.039 ± 0.004	0.020 ± 0.002	0.012 ± 0.004	0.006 ± 0.004	0.010 ± 0.006	inches
RMCP0402	0.62	1.00 ± 0.10	0.50 ± 0.05	0.30 ± 0.10	0.15 ± 0.10	0.25 ± 0.15	mm
RMCF0603	1.9	0.061 ± 0.006	0.031 ± 0.006	0.018 ± 0.006	0.012 ± 0.008	0.012 ± 0.008	inches
RMCP0603	2.0	1.55 ± 0.15	0.80 ± 0.15	0.45 ± 0.15	0.30 ± 0.20	0.30 ± 0.20	mm
RMCF0805	5.0	0.079 ± 0.008	0.049 ± 0.004	0.020 ± 0.006	0.014 ± 0.010	0.014 ± 0.010	inches
RMCP0805	4.4	2.00 ± 0.20	1.25 ± 0.10	0.50 ± 0.15	0.35 ± 0.25	0.35 ± 0.25	mm

Rev Date: 9/11/2024

This specification may be changed at any time without prior notice. Please confirm technical specifications before use.

RMCF / RMCP Series General Purpose Thick Film Standard Power

Stackpole Electronics, Inc. Resistive Product Solutions


and High-Power Chip Resistor

	Mechanical Specifications (cont.)									
	T 1 11 2		•	`	,					
Type/Code	Typical Unit	L	W	Н	а	b	Unit			
Type/Code	Weight (mg)	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Onit			
RMCF1206	8.9	0.126 ± 0.010	0.063 ± 0.006	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches			
RMCP1206	0.9	3.20 ± 0.25	1.60 ± 0.15	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm			
RMCF1210	15.6	0.126 ± 0.010	0.098 ± 0.010	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches			
RMCP1210	16.0	3.20 ± 0.25	2.50 ± 0.25	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm			
RMCF2010	23.6	0.197 ± 0.008	0.098 ± 0.008	0.022 ± 0.006	0.024 ± 0.012	0.024 ± 0.014	inches			
RMCP2010	24.2	5.00 ± 0.20	2.50 ± 0.20	0.55 ± 0.15	0.60 ± 0.30	0.60 ± 0.35	mm			
RMCF2512	40.0	0.248 ± 0.008	0.126 ± 0.010	0.022 ± 0.008	0.024 ± 0.012	0.024 ± 0.014	inches			
RMCP2512	39.4	6.30 ± 0.20	3.20 ± 0.25	0.55 ± 0.20	0.60 ± 0.30	0.60 ± 0.35	mm			

	Performance Characteristics								
Test	Test Specifications	Test Conditions (JIS-C 5202)							
	± (2% + 0.1Ω)	2.5 x rated voltage for 5 seconds							
Short Time Overload	Jumper: Max 0.05Ω after test	0201 = 1 A 0402 / 0603 = 2.5 A 0805 / 1206 / 1210 / 2010 / 2512 = 5 A							
Dielectric Withstanding Voltage	No flashover or breakdown	100 VAC, 1 minute							
Resistance to Soldering Heat	± 1%	260 ± 5°C, for 10 seconds ± 0.5 seconds (Solder Bath)							
Solderability	95% coverage, minimum	$235 \pm 5^{\circ}$ C, for 2 seconds ± 0.5 seconds (Colophonium flux)							
Temperature Cycle	± (1% + 0.05Ω) Jumper (< 0.05Ω)	-65°C: 30 minutes 25°C: 2 to 3 minutes 155°C: 30 minutes 25°C: 2 to 3 minutes (5 Cycles)							
Load Life (Endurance)	1% and below: ± (1% + 0.05Ω) 2% and 5%: ± (3% + 0.1Ω) Value < 1Ω: ± (3% + 0.1Ω) Jumper: Max 0.1Ω after test.	70 ± 2°C, RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"							
Voltage Coefficient	± 100 (ppm/V)	1/10 rated voltage for 3 seconds max. then rated voltage for 3 seconds max.							
Robustness of Termination	± (1% + 0.05Ω)	Bend of 2 mm for 5 ± 1 seconds							
Resistance to Solvent	1%: ± (0.5% + 0.05Ω) 5%: ± (0.5% + 0.05Ω) Jumper: Max. 0.05Ω after test	The tested resistor should be immersed into isopropyl alcohol of 20 to 25°C for 60 seconds. Then the resitor is left in the room for 48 hours.							
Damp Heat with Load	1%: ± (1% + 0.05Ω) 5%: ± (2% + 0.05Ω) Values < 1Ω: ± (3% + 0.1Ω) Jumper: Max. 0.1Ω after test	40 ± 2°C, 90%~95% R.H. RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hours "OFF"							

Operating temperature range is -55 to +155°C for all sizes except for 01005 size Operating temperature range for 01005 is -55 to +125°C

Power Derating Curve:

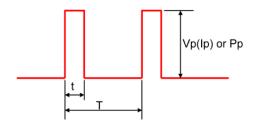
and High-Power Chip Resistor

Repetitive Pulse Information

(This information is for reference only and is not guaranteed performance.)

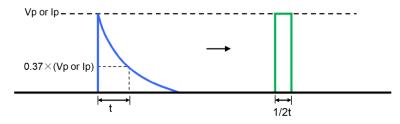
If repetitive pulses are applied to resistors, pulse wave form must be less than "Pulse Limiting Voltage", "Pulse Limiting Current" or "Pulse Limiting Wattage" calculated by the formula below.

 $Vp = K\sqrt{PxRxT/t}$

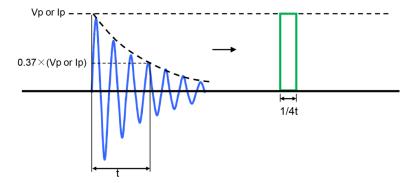

 $lp = K\sqrt{P/RxT/t}$

 $Pp = K^2 x P x T/t$

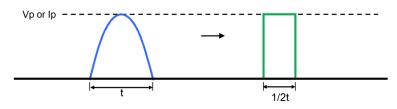
Where: Vp: Pulse limiting voltage (V)

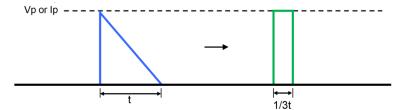

- lp: Pulse limiting current (A)
- Pp: Pulse limiting wattage (W)
- P: Power rating (W)
- R: Nominal resistance (ohm)
- T: Repetitive period (sec)
- t: Pulse duration (sec)
- K: Coefficient by resistors type (refer to below matrix)
- [Vr: Rated Voltage (V), Ir: Rated Current (A)]
- Note 1: If $T > 10 \rightarrow T = 10$ (sec), $T/t > 1000 \rightarrow T/t = 1000$
- Note 2: If T > 10 and T/t > 1000, "Pulse Limiting power (Single pulse) is applied
- Note 3: If Vp < Vr (lp < lr or Pp < P), Vr (lr, P) is Vp (lp, Pp)
- Note 4: Pulse limiting voltage (current, wattage) is applied at less than rated ambient temperature. If ambient temperature is more than the rated temperature (70°C), please decrease power rating according to "Power Derating Curve"
- Note 5: Please assure sufficient margin for use period and conditions for "Pulse Limiting Voltage"
- Note 6: If the pulse waveform is not square wave, please judge after transform the waveform into square wave according to the "Waveform Transformation to Square Wave".

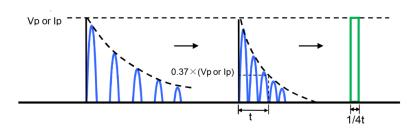
RMCF Coefficient (K) Matrix						
Ohmic Value	К					
R < 10Ω	0.50					
10Ω ≤ R < 100Ω	0.45					
100Ω ≤ R < 1KΩ	0.35					
1KΩ ≤ R < 10KΩ	0.25					
10KΩ ≤ R	0.20					



Waveform Transformation to Square Wave


1. Discharge curve wave with time constant "t" \rightarrow Square wave


2. Damping oscillation wave with time constant of envelope "t" \rightarrow Square wave


3. Half-wave rectification wave \rightarrow Square wave

4. Triangular wave \rightarrow Square wave

5. Special wave \rightarrow Square wave

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Resistive Product Solutions

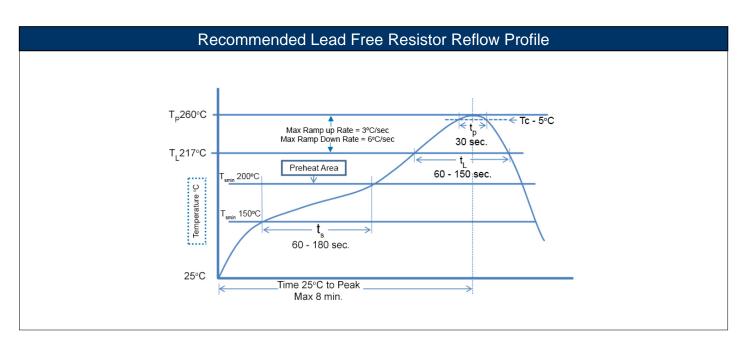
	Recommended Pad Layout								
Type/Code	A	В	С	Unit					
RMCF01005	0.008 0.20	0.020 0.50	0.008 0.20	inches mm					
RMCF0201	0.012	0.039	0.016	inches					
RMCP0201	0.30	1.00	0.40	mm					
RMCF0402	0.020	0.059	0.024	inches					
RMCP0402	0.50	1.50	0.60	mm					
RMCF0603	0.031	0.083	0.035	inches					
RMCP0603	0.80	2.10	0.90	mm					
RMCF0805	0.047	0.118	0.051	inches					
RMCP0805	1.20	3.00	1.30	mm					
RMCF1206	0.087	0.165	0.063	inches					
RMCP1206	2.20	4.20	1.60	mm					
RMCF1210	0.087	0.165	0.110	inches					
RMCP1210	2.20	4.20	2.80	mm					
RMCF2010	0.138	0.240	0.110	inches					
RMCP2010	3.50	6.10	2.80	mm					
RMCF2512	0.193	0.315	0.138	inches					
RMCP2512	4.90	8.00	3.50	mm					

Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles is 3.


Wave Soldering								
Description	Maximum	Recommended	Minimum					
Preheat Time	80 seconds	70 seconds	60 seconds					
Temperature Diff.	140°C	120°C	100°C					
Solder Temp.	260°C	250°C	240°C					
Dwell Time at Max	10 seconds	5 seconds	*					
Ramp DN (°C/sec)	N/A	N/A	N/A					

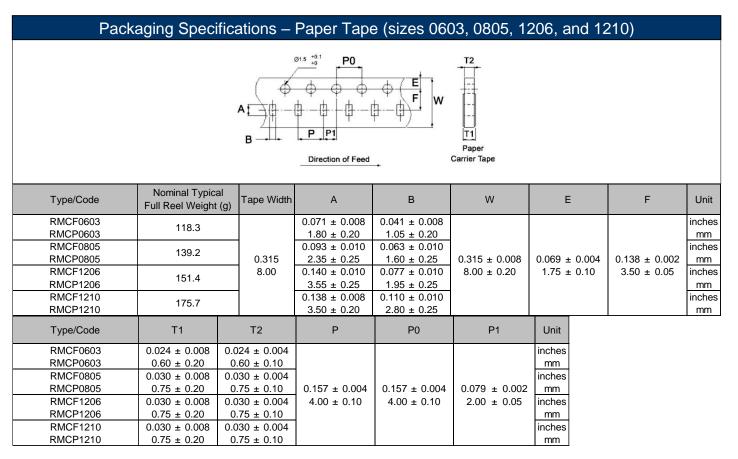
Temperature Diff. = Difference between final preheat stage and soldering stage.

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

	Convection IR Reflow								
Description	Maximum	Recommended	Minimum						
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*						
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds						
Solder Temp.	260°C	245°C	*						
Dwell Time at Max.	30 seconds	15 seconds	10 seconds						
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*						

Packaging (EIA Standard RS-481)

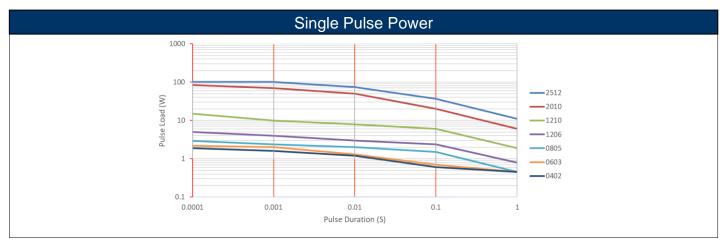

	Reel Specifications								
			A B C	MD					
Reel Type	Wa	М	A	В	С	D	Unit		
7" reel for	0.354 ± 0.020	7.008 ± 0.079				2.362 ± 0.039	inches		
8 mm tape	9.00 ± 0.50	178.00 ± 2.00	0.079 ± 0.020	0.531 ± 0.020	0.827 ± 0.020	60.00 ± 1.00	mm		
10" reel for	0.394 ± 0.020	10.000 ± 0.079	2.00 ± 0.50	13.50 ± 0.50	21.00 ± 0.50	3.937 ± 0.039	inches		
8 mm tape	10.00 ± 0.50	254.00 ± 2.00				100.00 ± 1.00	mm		

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Pac	kaging Spe	ecifica	ations	s – Paper T	ape (sizes (01005, 020	1, and 04	.02)									
	$A \xrightarrow{01.5}_{+0} \xrightarrow{+0.1}_{+0} PO \xrightarrow{T2}_{T1} \xrightarrow{T2}_{T1}$																
Type/Code	Nominal Typ Full Reel Weig		Tape Width	А	В	W	E	F	Unit								
RMCF01005	127.3			0.018 ± 0.001 0.45 ± 0.02	0.010 ± 0.001 0.25 ± 0.02				inches mm								
RMCF0201 RMCP0201	97.2	0.315	0.315									0.028 ± 0.006 0.70 ± 0.15	0.016 ± 0.006 0.40 ± 0.15	0.315 ± 0.008 8.00 ± 0.20	0.069 ± 0.00 1.75 ± 0.10		inches mm
RMCF0402 RMCP0402	94.5			0.047 ± 0.006 1.20 ± 0.15	0.028 ± 0.006 0.70 ± 0.15				inches mm								
Type/Code	T1		T2	Р	P0	P1	Unit										
RMCF01005	0.012 ± 0.001 0.31 ± 0.03		± 0.00 ± 0.03				inches mm										
RMCF0201 RMCP0201	0.015 ± 0.006 0.38 ± 0.15		± 0.00 ± 0.02		$\begin{array}{c} 4 \\ 0.157 \pm 0.004 \\ 4.00 \pm 0.10 \end{array}$	$\begin{array}{r} 0.079 \pm 0.002 \\ 2.00 \pm 0.05 \end{array}$	inches mm										
RMCF0402 RMCP0402	0.016 ± 0.008 0.40 ± 0.20		± 0.00 ± 0.05				inches mm										



General Purpose Thick Film Standard Power and High-Power Chip Resistor

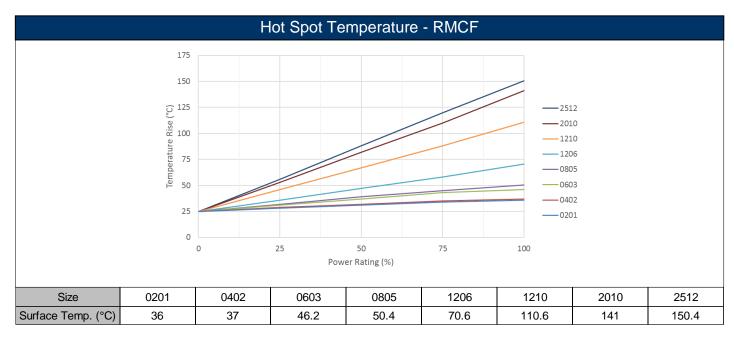
Stackpole Electronics, Inc.

Resistive Product Solutions

Packaging Specifications – Plastic Tape (sizes 2010 and 2512)														
Packaging Specifications – Plastic Tape (sizes 2010 and 2012) $1.5^{+0.1}_{+0}$ P0 F W P P1 P P														
Type/Code	Nominal Typi Full Reel Weigh		Tape Width		А		В		W	E	E		F	Unit
RMCF2010 RMCP2010	183.1		0.472		217 ± 0.012 5.50 ± 0.30			0.472	± 0.008	0.069 :	± 0.004	0.217	± 0.002	inches mm
RMCF2512 RMCP2512	RMCF2512 255.3 12.00 0.264 ± 0.008 0.134 ± 0.008 12.00 ± 0.20 1.75 ± 0.10 5.50 ± 0.05 inches													
Type/Code	Type/Code T1 T2 P P0 P1 Unit													
RMCF2010 RMCP2010	0.041 ± 0.008	0.009	9 ± 0.00	6	0.157 ± 0.0	004	0.157 ± 0	0.004	0.079 ±	0.002	inches mm			
RMCF2512 RMCP2512	1.05 ± 0.20	0.23	3 ± 0.15		4.00 ± 0.1	0	4.00 ± 0	0.10	2.00 ±	0.05	inches mm			

The data provided are for reference only. They are typical performance for this product but are not guaranteed. The actual pulse handling of each individual resistor may vary depending on a variety of factors including resistance tolerance and resistance value. Stackpole Electronics, Inc. assumes no liability for the use of this information. Customers should validate the performance of these products in their applications. Contact Stackpole marketing to discuss specific pulse application requirements.

Resistive Product Solutions


Temperature Measurement of Resistor Surface

Description: The resistor surface generated temperature variation after applied rated voltage. Products and power:

1								
Size	0201	0402	0603	0805	1206	1210	2010	2512
R-V	15K	40.2K	57.6K	180K	182K	100K	100K	75K
Rated Power (W)	1/20	1/16	1/10	1/8	1/4	1/2	3/4	1
Max Rated Voltage (V)	25	50	75	150	200	200	200	200

Test method: Measure component surface temperature directly after the temperature stabilizes.

Test result: As per table below:

The thermal resistance of the RMCP will be similar to the RMCF. For example, the RMCF2512 and the RMCP2512 will have similar surface temperatures at 1W; the RMCP is designed to withstand higher temperatures associated with high power levels.

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

Part Marking Instructions												
E96 and E24 Values for 0805-2512 (1% tolerances)												
The nominal resistance is marked on the surface of the overcoating with the use of IR21 IR21 IR20												
	√alues <100	•		ne decima	al holder				1.21Ω		100Ω	
						12 (5% to	lerance.	≤ 0.91Ω				
The nominal resistance is marked on the surface of the overcoating with the use of												
	racter ma			_		0	_				R680	
1. Values ≤ 0.91Ω will use "R" as the decimal holder. 0.68Ω												
$E24 Values for 0805-2512 (5\% tolerance, \geq 1\Omega)$												
he nomin	al resistanc	e is mark				•		•	1	ni in		
	aracter m							-	1R0		122	
	√alues betw	-		vill use "R	as the	decimal hol	der.		1Ω		1.2 KΩ	
						603 (5% t		2)				
he nomin	al resistanc	e is mark				•		•				
						. county wi			D/O	ni n	100	
hree character markings. 1. Values between 0.1Ω and 9.1Ω will use "R" as the decimal holder.												
	values betw √alues ≥10Ω				in as th	e deciriai fi			0.68Ω		10Ω	
۷. ۱		2 will use			for DCO	3 size (1%	toloran	coc)	0.0012		1012	
						•		•				
	A two character number is assigned to each standard R-Value (E96) as shown in the											
chart below. This is followed by one alpha character which is used as a multiplier.											001/	
chart bel			d by one a	lpha char	acter whi	ich is used	as a multip				03X	
		etter from	d by one a n''Y'' - ''F'' r	lpha char epresents	acter whi s a specif	ich is used fic multiplier	as a multip					
Alpł	Each le	etter from	d by one a n ''Y'' - ''F'' r iplier	lpha char	acter whi s a specif arking 3 = 1	ich is used fic multiplier Va 10.0 x 100	as a multip r. Ilue = 1 ΚΩ	lier.			03X 10.5Ω	
Alpł Y X	Each le ha Characte = 0.1 = 1	etter from er = Mult C = 10 D = 10	d by one a n ''Y'' - ''F'' r iplier 00 000	Ipha char epresents Chip Ma 01B 25C	acter whi s a specif arking 3 = 1 ; = 1	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000	as a multip r. Ilue = 1 ΚΩ) = 17.8 ΚΩ	olier. Ω				
Alph Y X A	Each le ha Characte = 0.1 = 1 = 10	etter from er = Mult C = 10 D = 10 E = 10	d by one a n''Y'' - ''F'' r iplier 00 000 0000	Ipha char epresents Chip Ma 01B	acter whi s a specif arking 3 = 1 ; = 1	ich is used fic multiplier Va 10.0 x 100	as a multip r. Ilue = 1 ΚΩ) = 17.8 ΚΩ	olier. Ω				
Alph Y X A	Each le ha Characte = 0.1 = 1	etter from er = Mult C = 10 D = 10	d by one a n''Y'' - ''F'' r iplier 00 000 0000	Ipha char epresents Chip Ma 01B 25C	acter whi s a specif arking 3 = 1 ; = 1	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000	as a multip r. Ilue = 1 ΚΩ) = 17.8 ΚΩ	olier. Ω				
Alph Y X A	Each le ha Characte = 0.1 = 1 = 10	etter from er = Mult C = 10 D = 10 E = 10	d by one a "Y" - "F" r iplier 00 000 0000 00000	Ipha char epresents Chip Ma 01B 25C	acter whi s a specif arking 3 = 1 ; = 1 ; = 1 0 = 5	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000 90.9 x10000 E96	as a multip r. Ilue = 1 ΚΩ) = 17.8 ΚΩ	olier. Ω				
Alph Y X A B	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value	etter from er = Mult C = 10 D = 10 E = 10 F = 10	d by one a "Y" - "F" r iplier 00 000 0000 0000 0000 R-Value	Ipha char epresents Chip Ma 01E 25C 93D	acter whi s a specif arking 3 = 1 5 = 1 0 = 5 E R-Value	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000 90.9 x1000 E96 #	as a multip r. = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value	انوr. <u>۲</u> ۲	R-Value	#	10.5Ω R-Value	
Alph Y X A B # 01	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0	etter from er = Mult C = 10 D = 10 E = 10 F = 10 # 17	d by one a "Y" - "F" r iplier 00 000 0000 0000 0000 R-Value 14.7	Ipha char epresents Chip Ma 01E 25C 93D # 33	acter whi s a specif arking 3 = 1 2 = 1 0 = 5 E R-Value 21.5	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 90.9 x1000 E96 e # 49	as a multip r. elue = 1 KΩ 0 = 17.8 Ks 0 = 909 Ks 0 = 909 Ks 31.6	blier.	46.4	81	10.5Ω R-Value 68.1	
Alph Y X A B	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2	etter from er = Mult C = 10 D = 10 E = 10 F = 10	d by one a "Y" - "F" r iplier 00 000 00000 00000 0000 00000 00000 000000	Ipha char epresents Chip Ma 01E 25C 93D # 33 34	acter whi a specif arking 3 = 1 2 = 1 0 = 5 R-Value 21.5 22.1	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 90.9 x1000 50	as a multip r. elue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value 31.6 32.4	blier.	46.4 47.5	81 82	10.5Ω R-Value 68.1 69.8	
Alph Y X A B # 01 02	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0	etter from er = Mult C = 10 D = 10 E = 10 F = 10 # 17 18	d by one a "Y" - "F" r iplier 00 000 0000 0000 0000 R-Value 14.7	Ipha char epresents Chip Ma 01E 25C 93D # 33	acter whi s a specif arking 3 = 1 2 = 1 0 = 5 E R-Value 21.5	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 90.9 x1000 E96 e # 49	as a multip r. elue = 1 KΩ 0 = 17.8 Ks 0 = 909 Ks 0 = 909 Ks 31.6	blier.	46.4	81	10.5Ω R-Value 68.1	
Alph Y X A B # 01 02 03	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 # 17 18 19	d by one a "Y" - "F" r iplier 00 000 00000 00000 00000 00000 00000 000000	Ipha char epresents Chip Ma 01E 25C 93D # 33 34 35	acter whi a specif arking 3 = 1 2 = 1 0 = 5 F R-Value 21.5 22.1 22.6	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 00.9 x10000 E96 # 49 50 51	as a multip r. elue = 1 KΩ 0 = 17.8 Kf 0 = 909 Kf 0 = 909 Kf 31.6 32.4 33.2	dier.	46.4 47.5 48.7	81 82 83	10.5Ω R-Value 68.1 69.8 71.5	
Alph Y X A B # 01 02 03 04 05 06	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 18 19 20 21 22	d by one a "Y" - "F" r iplier 00 0000 0000 00000 R-Value 14.7 15.0 15.4 15.8 16.2 16.5	Ipha chara epresents Chip Ma 01E 25C 93D # 33 34 35 36 37 38	acter whi a specified arking 3 = 1 2 = 1 2 = 2 4 2 = 2 2 2 2 2 2 3 7 2 4.3	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000 00.9 x10000 00.9 x100000 00.9 x1000000000000000000000000000000000000	as a multip r. Ilue = 1 KΩ 0 = 17.8 Kf 0 = 909 Kf 31.6 32.4 33.2 34.0 34.8 35.7	Alier.	46.4 47.5 48.7 49.9 51.1 52.3	81 82 83 84 85 86	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8	
Alph Y X A B 01 02 03 02 03 04 05 06 07	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 # 17 18 19 20 21 22 23	d by one a "Y" - "F" r iplier 00 0000 0000 00000 00000 R-Value 14.7 15.0 15.4 15.8 16.2 16.5 16.9	Ipha char. epresents Chip M: 01E 25C 93D # 33 34 35 36 37 38 39	acter whi a specified arking 3 = 1 2 = 1 2 = 2 2 = 1 2 = 2 4 2 = 2 2 2 2 2 3.7 2 4.3 2 4.9	ich is used fic multiplier Va 10.0 x 100 17.8 x 1000 90.9 x10000 90.9 x100000 90.9 x10000 90.9 x100000 90.9 x1000000000000000000000000000000000000	as a multip r. Ilue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg 31.6 32.4 33.2 34.0 34.8 35.7 36.5	Alier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6	81 82 83 84 85 86 87	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7	
Alpł Y X A B 01 02 03 04 05 06 07 08	Each le ha Characte = 0.1 = 1 = 10 = 100 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 18 19 20 21 22 23 24	d by one a "Y" - "F" r iplier 00 0000 0000 0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000 0000 0000 0000 0000 00	Ipha char, epresents Chip M: 01E 25C 93D # 33 34 35 36 37 38 39 40	acter whi a specified arking 3 = 1 2 = 1 2 = 2 3 = 2 3 = 2 4 21.5 22.1 22.6 23.7 24.3 24.9 25.5	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 90.9 x10000 90.9 x100000 90.9 x10000 90.9 x10000 90.9 x100000 90.9 x1000000000000000000000000000000000000	as a multip r. ilue = 1 KΩ = 1 KΩ = 17.8 Kg 0 = 909 Kg 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4	blier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9	81 82 83 84 85 86 87 88	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6	
Alpł Y X A B 01 02 03 04 05 06 07 08 09	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 11.8 12.1	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 18 19 20 21 22 23 24 25	d by one a "Y" - "F" r iplier 00 000 00000 0000 00000 000000	Ipha char epresents Chip Ma 01E 25C 93D # 33 34 35 36 37 38 39 40 41	acter whi a specific arking 3 = 1 2 = 1 0 = 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 20.9 x1000 20.9 x1000000000000000000000000000000000000	as a multip r. elue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3	# 65 66 67 68 69 70 71 72 73	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2	81 82 83 84 85 86 87 88 88 89	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5	
Alph Y X A B 01 02 03 04 05 06 07 08 09 10	Each le ha Characte = 0.1 = 1 = 10 = 100 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 11.8 12.1 12.4	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 18 19 20 21 22 23 24 25 26	by one a "Y" - "F" r iplier 00 000 0000 0000 00000 00000 00000 0000	Ipha char epresents Chip Ma 01E 25C 93D # 33 34 35 36 37 38 39 40 41 41 42	acter whi a specif arking 3 = 1 2 = 1 2 = 1 2 = 2 2 = 1 2 = 2 2 = 2 2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 2 2.1 2 2.5 2 2.1 2 2.3 2 4.9 2 5.5 2 6.1 2 26.7	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 20.9 x10000 20.9 x100000 20.9 x10000 20.9 x10000 20.9 x10000 20.9 x10000 20.9 x10000 20.9 x10000 20.9 x10000 20.9 x100000 20.9 x1000000000000000000000000000000000000	as a multip r. ilue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2	# 65 66 67 68 69 70 71 72 73 74	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6	81 82 83 84 85 86 87 88 88 89 90	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5	
Alph Y X A B 01 02 03 04 05 06 07 08 09 10 11	Each le ha Characte = 0.1 = 1 = 10 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 11.8 12.1 12.4 12.7	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 8 19 20 21 22 23 24 25 26 27	by one a "Y" - "F" r iplier 00 000 0000 0000 00000 00000 00000 0000	Ipha char epresents Chip Ma 01E 25C 93D # 33 34 35 36 37 38 39 40 41 41 42 43	acter whi a specif arking 3 = 1 2 =	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 00.9 x10000 00.9 x1000000000000000000000000000000000000	as a multip r. ilue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2	Alier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0	81 82 83 84 85 86 87 88 88 89 90 91	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 84.5 86.6	
Alph Y X A B 01 02 03 04 05 06 07 08 09 10 11 11 12	Each le ha Characte = 0.1 = 1 = 10 = 100 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 11.8 12.1 12.4 12.7 13.0	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 7 8 7 7 7 8 7 7 7 8 7 7 20 21 22 23 24 25 26 27 28	by one a "Y" - "F" r iplier 00 000 0000 0000 00000 00000 00000 0000	Ipha chara epresents Chip Ma 01E 25C 93D 93D 93D 93D 93D 93D 93D 93D 93D 93D	acter whi arking 3 = 1 2	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 00.9 x10000 00.9 x100000 00.9 x10000 00.9 x10000 00.9 x10000 00.9 x10000 00.9 x1000000000000000000000000000000000000	as a multip r. ilue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2	Alier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4	81 82 83 84 85 86 87 88 88 89 90 91 91 92	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7	
Alph Y X A B 01 02 03 04 05 06 07 08 09 10 11 11 12 13	Each le ha Characte = 0.1 = 1 = 10 = 100 = 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 8 9 20 21 22 23 24 25 26 27 28 29	by one a "Y" - "F" r iplier 00 000 0000 0000 00000 00000 00000 0000	Ipha chara epresents Chip Ma 01E 25C 93D 93D 93D 93D 93D 93D 93D 93D 93D 93D	acter whi a specific arking 3 = 1 2	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 20.9 x10000 20.9 x100000 20.9 x1000000000000000000000000000000000000	as a multip r. Ilue = 1 KΩ = 17.8 Kg = 909 Kg R-Value 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2 42.2	Alier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4 61.9	81 82 83 84 85 86 87 88 88 89 90 91 91 92 93	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9	
Alph Y X A B 01 02 03 04 05 06 07 08 09 10 11 11 12	Each le ha Characte = 0.1 = 1 = 10 = 100 = 100 R-Value 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 11.8 12.1 12.4 12.7 13.0	etter from er = Mult C = 10 D = 10 E = 10 F = 10 F = 10 F = 10 7 7 7 8 7 7 7 8 7 7 7 8 7 7 20 21 22 23 24 25 26 27 28	by one a "Y" - "F" r iplier 00 000 0000 0000 00000 00000 00000 0000	Ipha chara epresents Chip Ma 01E 25C 93D 93D 93D 93D 93D 93D 93D 93D 93D 93D	acter whi a specif arking 3 = 1 2 =	ich is used fic multiplien Va 10.0 x 100 17.8 x 1000 00.9 x10000 00.9 x100000 00.9 x10000 00.9 x10000 00.9 x10000 00.9 x10000 00.9 x1000000000000000000000000000000000000	as a multip r. ilue = 1 KΩ 0 = 17.8 Kg 0 = 909 Kg R-Value 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2	Alier.	46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4	81 82 83 84 85 86 87 88 88 89 90 91 91 92	10.5Ω R-Value 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7	

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status										
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)				
RMCF	General Purpose Thick Film Standard Power Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Jan-04 (Japan) Jan-05 (Taiwan, China)	04/01 05/01				
RMCP	General Purpose Thick Film High-Power Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Always	Always				

Note (1): RoHS Compliant by means of exemption 7c-1.

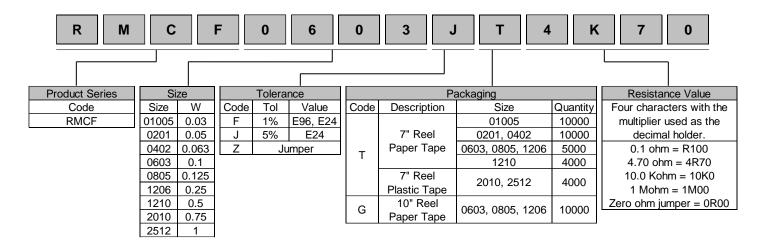
"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

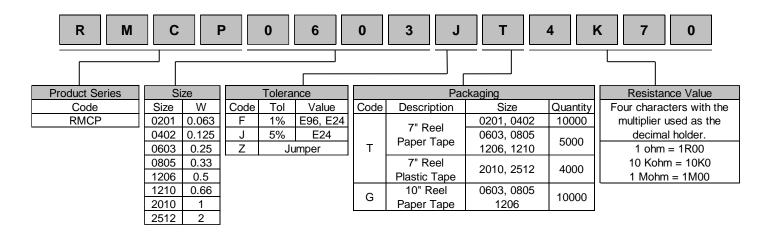
Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy


It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

RMCF / RMCP Series General Purpose Thick Film Standard Power and High-Power Chip Resistor


Stackpole Electronics, Inc.

Resistive Product Solutions

How to Order - RMCF

How to Order - RMCP

