MOSFET – Single, N-Channel, Small Signal, **SOT-23** 60 V, 310 mA

Features

- Low R_{DS(on)}
- Small Footprint Surface Mount Package
- Trench Technology
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

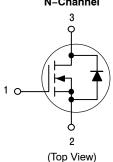
Rating		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	60	V
Gate-to-Source Voltage		V _{GS}	±30	V
Drain Current (Note 1) Steady State t < 5 s	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	260 190 310 220	mA
Power Dissipation (Note 1) Steady State t < 5 s		P _D	300 420	mW
Pulsed Drain Current ($t_p = 10 \mu$	s)	I _{DM}	1.2	Α
Operating Junction and Storage Temperature Range	e	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)		I _S	300	mA
Lead Temperature for Soldering (1/8" from case for 10 s)	Purposes	T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	417	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	300	

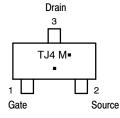
^{1.} Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
60 V	3.0 Ω @ 4.5 V	310 mA
	2.5 Ω @ 10 V	

Simplified Schematic


N-Channel

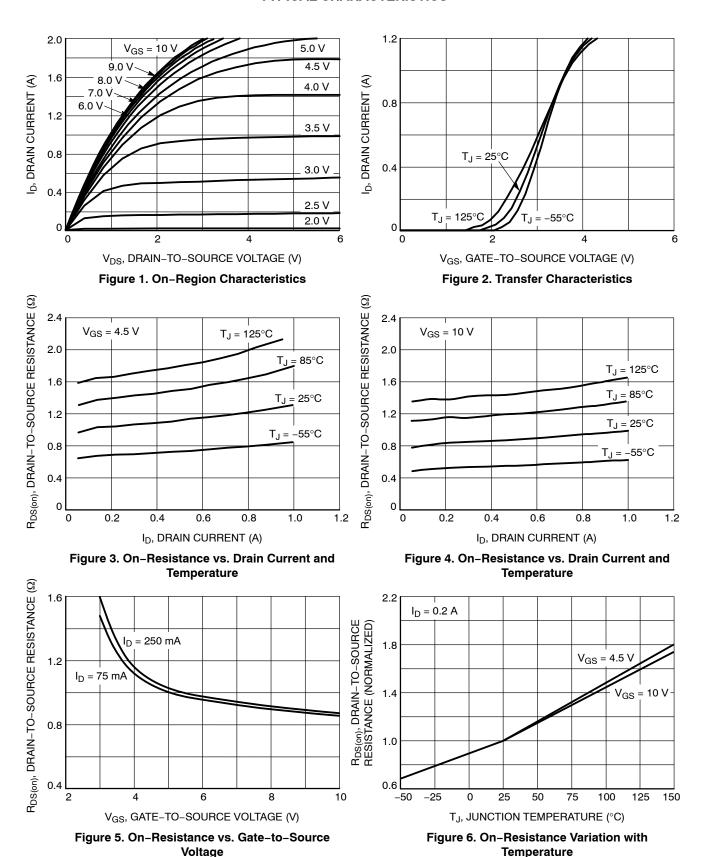
MARKING DIAGRAM & PIN ASSIGNMENT

SOT-23 **CASE 318** STYLE 21

TJ4 = Device Code = Date Code Μ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR5103NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS	•	•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				75		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
		V _{DS} = 60 V	T _J = 125°C			500	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, \	/ _{GS} = ±30 V			200	nA
ON CHARACTERISTICS (Note 2)				•		•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 250 μA	1.9		2.6	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	V _{GS} = 10 V, I _D = 240 mA		1.0	2.5	Ω
		V _{GS} = 4.5 V, I _D = 50 mA			1.4	3.0	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 200 mA			530		mS
CHARGES AND CAPACITANCES				•		•	•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			26.7	40	pF
Output Capacitance	C _{OSS}				4.6		
Reverse Transfer Capacitance	C _{RSS}				2.9		
Total Gate Charge	Q _{G(TOT)}				0.81		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5 V,	V _{DS} = 10 V;		0.31		- - -
Gate-to-Source Charge	Q_{GS}	I _D = 2	40 mA		0.48		
Gate-to-Drain Charge	Q_{GD}				0.08		
SWITCHING CHARACTERISTICS, V _{GS}	= V (Note 3)			•		•	•
Turn-On Delay Time	t _{d(ON)}				1.7		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DD} = 30 \text{ V},$ $I_{D} = 200 \text{ mA}, R_{G} = 10 \Omega$			1.2		
Turn-Off Delay Time	t _{d(OFF)}				4.8		
Fall Time	t _f				3.6		
DRAIN-SOURCE DIODE CHARACTER	ISTICS	•		-	-	-	-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.79	1.2	V
		I _S = 200 mA			0.7		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$ 3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

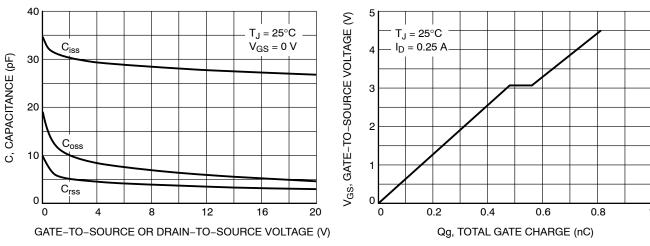


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

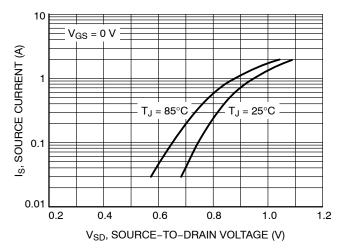


Figure 9. Diode Forward Voltage vs. Current

MILLIMETERS

MIN

0.89

0.01

0.37

0.08

2.80

1.20

1.78

0.30

0.35

2.10

O°

NOM

1.00

0.06

0.44

0.14

2.90

1.30

1.90

0.43

0.54

2.40

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU**

DATE 14 AUG 2024

MAX

1.11

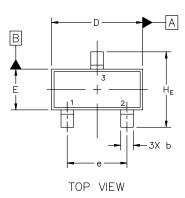
0.10

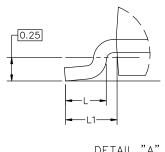
0.50

0.20

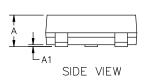
3.04

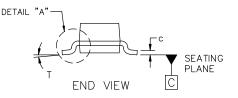
1.40

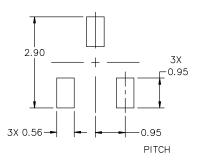

2.04


0.55

0.69


2.64


10°



DETAIL "A" Scale 3:1

NOTES:

DIM

Α

Α1

b

С

D

Ε

е L

L1

HE

Τ

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS:
- MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 1 OF 2	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR		NODE D CONNECTION ATHODE	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CA 2. CATHODE 2. CA 3. CATHODE-ANODE 3. AN	ATHODE PIN 1. SOURCE ATHODE 2. DRAIN	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE			STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: STYLE 24: PIN 1. ANODE PIN 1. GAT 2. ANODE 2. DR/ 3. CATHODE 3. SOU	TE PIN 1. ANODE AIN 2. CATHODE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales